12 research outputs found

    ISP-friendly Peer-assisted On-demand Streaming of Long Duration Content in BBC iPlayer

    Full text link
    In search of scalable solutions, CDNs are exploring P2P support. However, the benefits of peer assistance can be limited by various obstacle factors such as ISP friendliness - requiring peers to be within the same ISP, bitrate stratification - the need to match peers with others needing similar bitrate, and partial participation - some peers choosing not to redistribute content. This work relates potential gains from peer assistance to the average number of users in a swarm, its capacity, and empirically studies the effects of these obstacle factors at scale, using a month-long trace of over 2 million users in London accessing BBC shows online. Results indicate that even when P2P swarms are localised within ISPs, up to 88% of traffic can be saved. Surprisingly, bitrate stratification results in 2 large sub-swarms and does not significantly affect savings. However, partial participation, and the need for a minimum swarm size do affect gains. We investigate improvements to gain from increasing content availability through two well-studied techniques: content bundling - combining multiple items to increase availability, and historical caching of previously watched items. Bundling proves ineffective as increased server traffic from larger bundles outweighs benefits of availability, but simple caching can considerably boost traffic gains from peer assistance.Comment: In Proceedings of IEEE INFOCOM 201

    On Factors Affecting the Usage and Adoption of a Nation-wide TV Streaming Service

    Full text link
    Using nine months of access logs comprising 1.9 Billion sessions to BBC iPlayer, we survey the UK ISP ecosystem to understand the factors affecting adoption and usage of a high bandwidth TV streaming application across different providers. We find evidence that connection speeds are important and that external events can have a huge impact for live TV usage. Then, through a temporal analysis of the access logs, we demonstrate that data usage caps imposed by mobile ISPs significantly affect usage patterns, and look for solutions. We show that product bundle discounts with a related fixed-line ISP, a strategy already employed by some mobile providers, can better support user needs and capture a bigger share of accesses. We observe that users regularly split their sessions between mobile and fixed-line connections, suggesting a straightforward strategy for offloading by speculatively pre-fetching content from a fixed-line ISP before access on mobile devices.Comment: In Proceedings of IEEE INFOCOM 201

    Consume Local:Towards Carbon Free Content Delivery

    Get PDF

    SCORE:Exploiting Global Broadcasts to Create Offline Personal Channels for On-Demand Access

    Get PDF
    The last 5 years have seen a dramatic shift in media distribution. For decades, TV and radio were solely provisioned using push-based broadcast technologies, forcing people to adhere to fixed schedules. The introduction of catch-up services, however, has now augmented such delivery with online pull-based alternatives. Typically, these allow users to fetch content for a limited period after initial broadcast, allowing users flexibility in accessing content. Whereas previous work has investigated both of these technologies, this paper explores and contrasts them, focusing on the network consequences of moving towards this multifaceted delivery model. Using traces from nearly 6 million users of BBC iPlayer, one of the largest catch-up TV services, we study this shift from push-to pull-based access. We propose a novel technique for unifying both push-and pull-based delivery: the Speculative Content Offloading and Recording Engine (SCORE). SCORE operates as a set-top box, which interacts with both broadcast push and online pull services. Whenever users wish to access media, it automatically switches between these distribution mechanisms in an attempt to optimize energy efficiency and network resource utilization. SCORE also can predict user viewing patterns, automatically recording certain shows from the broadcast interface. Evaluations using our BBC iPlayer traces show that, based on parameter settings, an oracle with complete knowledge of user consumption can save nearly 77% of the energy, and over 90% of the peak bandwidth, of pure IP streaming. Optimizing for energy consumption, SCORE can recover nearly half of both traffic and energy savings

    SCORE: Exploiting Global Broadcasts to Create Offline Personal Channels for On-Demand Access

    No full text
    The last 5 years have seen a dramatic shift in media distribution. For decades, TV and radio were solely provisioned using push-based broadcast technologies, forcing people to adhere to fixed schedules. The introduction of catch-up services, however, has now augmented such delivery with online pull-based alternatives. Typically, these allow users to fetch content for a limited period after initial broadcast, allowing users flexibility in accessing content. Whereas previous work has investigated both of these technologies, this paper explores and contrasts them, focusing on the network consequences of moving towards this multifaceted delivery model. Using traces from nearly 6 million users of BBC iPlayer, one of the largest catch-up TV services, we study this shift from push- to pull-based access. We propose a novel technique for unifying both push- and pull-based delivery: the Speculative Content Offloading and Recording Engine (SCORE). SCORE operates as a set-top box, which interacts with both broadcast push and online pull services. Whenever users wish to access media, it automatically switches between these distribution mechanisms in an attempt to optimize energy efficiency and network resource utilization. SCORE also can predict user viewing patterns, automatically recording certain shows from the broadcast interface. Evaluations using our BBC iPlayer traces show that, based on parameter settings, an oracle with complete knowledge of user consumption can save nearly 77% of the energy, and over 90% of the peak bandwidth, of pure IP streaming. Optimizing for energy consumption, SCORE can recover nearly half of both traffic and energy savings
    corecore